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ABSTRACT

Buoyancy anomalies caused by thermobaricity, that is, the modulation of seawater compressibility by potential
temperature anomalies, underlie a long-standing argument against the use of potential-density-framed numerical
models for realistic circulation studies. The authors show that this problem can be overcome by relaxing the
strict correspondence between buoyancy and potential density in isopycnic-coordinate models. A parametric
representation of the difference between the two variables is introduced in the form of a ‘‘virtual potential
density,’’ which can be viewed as the potential density that would be computed from the in situ conditions using
the compressibility coefficient for seawater of a fixed (but representative) salinity and potential temperature.
This variable is used as a basis for effective dynamic height computations in the dynamic equations, while the
traditionally defined potential density may be retained as model coordinate. The conservation properties of the
latter assure that adiabatic transport processes in a compressibility-compliant model can still be represented as
exactly two-dimensional. Consistent with its dynamic significance, the distribution of virtual potential density
is found to determine both the local static stability and, to a lesser degree, the orientation of neutrally buoyant
mixing surfaces. The paper closes with a brief discussion of the pros and cons of replacing potential density
by virtual potential density as vertical model coordinate.

1. Introduction

The shallow-water equations have proven to be a ver-
satile tool for elucidating barotropic aspects of ocean
circulation dynamics. In ‘‘stacked’’ or multilayer form
they have also been used to investigate baroclinic dy-
namics, albeit under circumstances where neglect of
compressibility effects and diapycnal mixing processes
can be defended based on scaling arguments (e.g., Ped-
losky 1982; Gill 1982). Numerical solutions of these
equations have been studied in the oceanic context since
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the 1960s (e.g., Welander 1966; Holland 1967). Over
the years, these efforts have led to the development of
full-fledged oceanic general circulation models, which
are referred to as layer models when conceived as exact
representations of a set of incompressible and immis-
cible fluid layers, but otherwise are referred to as ‘‘iso-
pycnic coordinate’’ or simply ‘‘isopycnic’’ models (e.g.,
Bleck et al. 1992; Oberhuber 1993).

Isopycnic-coordinate models are traditionally being
formulated in terms of potential (as opposed to in situ)
density. There are two reasons for this: Potential density
surfaces are material under adiabatic conditions, ren-
dering transport processes two-dimensional in the oce-
anic interior, and they approximately correspond to neu-
trally buoyant surfaces along which most of the interior
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FIG. 1. Lower panel: interhemispheric pressure difference (in relative units) based on the u/S profiles shown in the upper
panels. Solid: in situ density; short-dashed: potential densities r0, r2, r4.

oceanic mixing takes place. This ‘‘tradition’’ manifests
itself in two ways, which we wish to distinguish here
sharply: (i) coordinate layers are defined as layers of
constant potential density and (ii) the dynamic equations
treat seawater as incompressible; that is, they do not
differentiate between the in situ density of the water in
each coordinate layer and its potential density.

Modeling conventions (i) and (ii) give rise to two
problems which, though seemingly disparate, are both
related to the fact that seawater is compressible—spe-
cifically, that its compressibility has a thermobaric com-
ponent, that is, depends on temperature and salinity.

R In haloclinic regions, the slope of a potential density
surface is a function of the reference pressure used in
defining potential density. The sensitivity of this slope
to salinity variations is such that a reference pressure
yielding monotonic variation of potential density with
depth everywhere in the World Ocean does not exist.
In other words, no matter which reference pressure
one chooses, a geographic location can always be
found where potential isopycnals will fold. This ob-
viously interferes with the use of potential density as
a vertical coordinate in global ocean models.

R Variations of in situ density along potential isopycnals
caused by the thermobaric effect give rise to pressure
forces and circulation systems, which, though weak,

cannot safely be ignored in a general circulation mod-
el. A demonstration of the existence and likely rele-
vance of such pressure forces is given below.

The subsurface circulation in the Atlantic is charac-
terized, in descending order, by northward-flowing up-
per Antarctic Intermediate Water, southward-flowing
North Atlantic Deep Water, and northward-flowing Ant-
arctic Bottom Water [Fig. 6.15 in Open University
(1989)]. This double reversal of flow direction corre-
sponds to—and most likely is dynamically controlled
by—a double reversal of the interhemispheric pressure
force with depth, created by the higher compressibility
of the colder southern water.

To illustrate the existence of this pressure force, we
consider two idealized water columns, one salty and
relatively warm and the other fresh and cold, repre-
senting wintertime subpolar North and South Atlantic
water columns, respectively. We prescribe u and S in
the two water columns as (4.58C, 34.8 psu) and (20.58C,
34.0 psu), respectively; this is illustrated in the top two
panels of Fig. 1. The solid curve in the lower panel of
Fig. 1 represents the interhemispheric pressure differ-
ence (in arbitrary units) based on the in situ density r,
with the barotropic component removed; it indeed
shows the expected double reversal with depth. The
three dashed curves in the same panel show the inter-



OCTOBER 1999 2721N O T E S A N D C O R R E S P O N D E N C E

hemispheric pressure difference obtained by substituting
potential densities r0, r2, r4 (potential densities refer-
enced to pressure levels 0, 20, and 40 MPa, respectively)
for r at all depths. Owing to the fact that =rr by def-
inition is independent of depth, these curves are linear
and hence show only a single reversal of the pressure
difference with depth. This suggests that a traditional
isopycnic model, irrespective of which reference level
its vertical coordinate is based on, would be unable to
simulate the interleaving of Atlantic water masses de-
scribed above.

The obvious solution to the first problem men-
tioned—folding of coordinate surfaces—is to generalize
the procedure for placing layer interfaces in the fluid,
that is, to deviate from the notion that interfaces must
everywhere coincide with potential isopycnals. Exper-
iments with a suitably generalized vertical coordinate,
largely based on atmospheric modeling know-how
(Bleck and Benjamin 1993), are under way and will be
reported on at some future date. The purpose of the
present paper is to suggest ways in which the second
problem mentioned, the inability of isopycnic models
to simulate thermobarically driven circulation systems,
can be overcome.

2. Density representation in isopycnic models

In the following, variables without sub- or super-
scripts will be used to denote in situ or local conditions
(pressure p, specific volume a, . . . ), while subscript r
will denote potential values achieved after adiabatic
(de)compression to reference pressure pr.

If the incompressibility assumption (ii) is what pre-
vents thermobaric effects from being included in iso-
pycnic models, then the remedy is obvious: one must
liberate oneself from the tradition of letting the defi-
nition of the vertical coordinate dictate the water density
within each layer. In other words, water density in the
model must be allowed to vary not only from layer to
layer, but also within coordinate layers.

The question then becomes: which density-related, x,
y, t-dependent variable should be chosen to represent
the mass field in isopycnic model layers?

One obvious and seemingly safe choice is to set the
density within coordinate layers to the in situ water
density. Unfortunately, this has severe consequences for
the accuracy with which the horizontal pressure gradient
force can be computed in steeply inclined coordinate
layers. The argument is as follows.

Transformation from Cartesian (x, y, z) to isopycnic
(x, y, ar) coordinates1 under hydrostatic conditions
changes the pressure gradient term in the horizontal mo-
mentum equation (loosely referred to as pressure gra-
dient ‘‘force,’’ or PGF) into

1 We use the adjective ‘‘isopycnic’’ throughout this paper to denote
constant potential density.

2a=z p 5 12= M p= a,a ar r
(1)

where M 5 pa 1 gz is the Montgomery potential (Mont-
gomery 1937) and the subscripted = operator denotes
differentiation in x, y direction with the subscript held
constant. A form of the hydrostatic equation convenient
for evaluating M is

]M
5 p.

]a

In steeply inclined ar layers, the two terms and= Mar

in (1) can individually become orders of mag-p= aar

nitude larger than their residual a=z p, thereby affecting
numerical precision in evaluating the latter. This prob-
lem is related to the one discovered years ago in models
using terrain-following (so-called s) coordinates (e.g.,
Janjic 1977), even though it seems to be more serious
in the present context. Practical tests conducted with the
Miami Isopycnic Coordinate Ocean Model indeed have
shown that the approach based on (1) not only leads to
accuracy problems, but to insurmountable numerical
stability problems (Sun 1997).

Defining the Montgomery potential in terms of ar

instead of a, as in M 5 par 1 gz, does not alleviate
this problem. In this case, (1) is replaced by

2a=z p 5 1 (ar 2 a)2= M = p,a ar r
(2)

which again is a two-term expression where both terms
have been found to become unacceptably large in case
of steeply inclined ar surfaces. In fact, the term in-
volving serves as a particularly good indicator of= par

the degeneracy in the PGF calculation created by steeply
inclined ar surfaces.

The excessive magnitude of the right-hand side terms
in (2) can be attributed to the combination of an ar-
based Montgomery potential with an a-based hydro-
static equation. In traditional isopycnic models, a two-
term representation of the PGF is avoided by evaluating
the PGF in the form where M is defined as in2= Mar

(2) but satisfies the modified hydrostatic equation
]M/]ar 5 p. This PGF expression is exact only if the
in situ water density of the ocean being modeled is
identical to its potential density [referred to earlier as
modeling convention (ii)]. It would seem, therefore, that
a choice must be made in isopycnic modeling between
the ‘‘s coordinate error’’ and the thermobaricity error.
Fortunately, this is not so.

We will demonstrate that a modified potential density,
which we choose to name virtual potential density,
matches the in situ density in its ability to capture the
dynamic aspects of the oceanic mass field in isopycnic
models, while avoiding the pitfalls in the pressure gra-
dient computation just mentioned. After establishing
this result, which has possible implications for noniso-
pycnic models as well, we will explore the applicability
of virtual potential density as vertical coordinate in layer
models. Of particular interest in this context are folding
tendencies and the buoyancy neutrality, or lack thereof,
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FIG. 2. Adiabatic compressibility (1025 MPa21) at 0 MPa (k0, sol-
id) and 50 MPa (k5, dashed) as function of u and S.

of potential isopycnals versus surfaces of virtual poten-
tial density.

3. Basic definitions

The equation of state for seawater expresses its den-
sity (r) (or its reciprocal, a) in terms of the salinity (S),
temperature (T ), and pressure ( p). Adiabatic
(de)compression to a reference pressure pr causes a and
T to change to values denoted respectively as potential
specific volume (ar) and potential temperature (Tr [
u); these will henceforth be considered as primary ther-
modynamic variables in place of a and T. We can, with-
out loss of generality, use different reference pressures
for these variables, and choose for conformity with
oceanographic practice 1 bar 5 0.1 MPa (fn 2) as the
reference for u, while leaving the choice of reference
pressure for ar to be determined as appropriate for spe-
cific applications. This convention is advantageous in
model applications, since u under this definition is iden-
tical in the surface layer to the in situ temperature, which
is a controlling parameter in air–sea interaction and ra-
diative transfer processes.

A general functional relation between in situ specific
volume and potential specific volume ar(u, S) 5
a(u, S, pr) is

pr

a(u, S, p) 5 a (u, S) exp k(u, S, p9) dp9, (3)r E
p

which results from integrating the expression for the
adiabatic compressibility

1 ]r 1 ]a
k 5 5 2 (4)1 2 1 2r ]p a ]p

u,S u,S

over the pressure interval (p, pr).
We evaluate k using the equation of state developed

by Jackett and McDougall (1995, hereafter JMcD), an
approximation of the UNESCO formula written in terms
of u instead of T. To give a general impression of the
k variability between the surface and the sea floor, we
show in Fig. 2 plots of k0 and k5 (compressibility at 0
and 50 MPa) over the range 228 # u # 328C and 30
# S # 38 psu. The figure indicates that k varies by
;15% over both the 5-km depth range and the 32-K
temperature range. The variation with salinity is some-
what lower, ;3% over the 0.8% salinity range. The
variability in p is seen to be largely uncorrelated with
that in u and S.

The Bjerknes circulation theorem emphasizes the dis-
tinction between barotropic fluids, whose density de-
pends only on pressure, and baroclinic fluids, where
this is not the case. According to the theorem, buoyancy
forces can drive circulation systems only in baroclinic

2 1 MPa corresponds approximately to a 100-m depth interval.

fluids; that is, fluids whose density is affected by var-
iables other than pressure—temperature and salinity in
the oceanic case. In order to isolate the components of
density variability that are capable of creating circula-
tion-inducing buoyancy contrasts from those that are
dynamically passive, we proceed now to split k into a
pressure-dependent component k ( p) and a residual ther-
mobaric component, which we will abbreviate here by
k ( u) , even though it may exhibit some salinity and pres-
sure dependence as well. Judging from Fig. 2, k ( p) is at
least one order of magnitude larger than k ( u) . A density
field from which the effect of the k ( p)-related compress-
ibility has been removed can therefore be expected to
be much closer to the (genuine) potential than to the in
situ density field. Thus, if a way can be found to remove
the effect of k (p) from the oceanic density field, we will
be able to substantially reduce the size of the term

in (1) (and of the term at the same time).p= a = Ma ar r

Substituting k ( p) 1 k (u) for k in (3) leads to

pr

(u )a(u, S, p) 5 a (u, S)A (p) exp k (u, S, p9) dp9, (5)r r E
p

where

pr

(p)A (p) 5 exp k (p9) dp9 (6)r E
p

describes the (de)compression effect attributable to the
p-dependent component of compressibility alone: Ar(p)
is the term whose effect on the dynamic equations we
are trying to remove.

The next step is to combine the other two factors on
the right-hand side of (5) into
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TABLE 1. Coefficients c1, . . . , 11 for k in (8) and (9).

c1 c2 c3 c4 c5 c6

1.84412 3 1024 20.128026 46.3424 23.07406 3 1025 0.00460241 20.289649
c7 c8 c9 c10 c11

20.109102 7.95530 3 1024 0.00110342 1.42401 3 1025 21.31958 3 1025

pr

(u )a*(u, S, p) [ a (u, S) exp k (u, S, p9) dp9r E
p

a(u, S, p)
5 . (7)

A (p)r

The variable a* so defined would be identical to the
conventional potential specific volume ar(u, S) if com-
pressibility were a function of p alone, that is, if there
were no thermobaricity. We can also say that a* is the
potential specific volume a water parcel assumes during
adiabatic (de)compression to pressure pr if its u, S, p-de-
pendent compressibility coefficient is replaced by one
for standard salinity and potential temperature. Borrow-
ing from the practice of expressing atmospheric buoy-
ancy variations caused by water vapor in terms of a
‘‘virtual’’ temperature, we will refer to a* as virtual
potential specific volume, the reciprocal of virtual po-
tential density.

Even though a* depends on both p and pr, we choose
for simplicity not to refer to it as , given that virtuala*r
potential densities referenced to different pressures pr,
ps only differ by a constant factor Ar(ps). In other words,
a* surfaces associated with different reference pressures
are congruent.

It is worth pointing out that the problems addressed
in this paper do not appear in the atmospheric context.
The compressibility of an ideal gas is k 5 cy /(cpp).
Thus, to the extent that the atmospheric constituents can
be treated as ideal gases and the dependence of cp and
cy on the water vapor content can be neglected, the
atmosphere is an example of a fluid where k 5 k ( p) .

4. Practical implications

Analysis in terms of thermobaric effects provides a
unified perspective on several of the generally perceived
limitations of potential density-based reference frames
that arise when water mass variability in u and S is
involved. The key problem areas addressed here are

1) impact of thermobaricity on the dynamic balance,
specifically the horizontal and vertical components
of the pressure gradient force;

2) the representation of static stability, and the problem
of isopycnic surface folding;

3) the deviations from buoyancy neutrality of isopycnic
lateral displacements.

a. Polynomial approximation of k

For practical model use, we generated a least squares
polynomial approximation to (4), based on the state
equation of JMcD, in the ranges of 228 # u # 328C,
30 # S # 38 psu, and 0 # p # 55 MPa. After con-
siderable experimentation, we settled on a polynomial
of third degree in u, quadratic in p, linear in S, and
including the composite terms uS, up, u2p, and uSp.

Setting k 5 k ( p) 1 k (u) , the 11-term polynomial so
defined splits into

k ( p) 3 105 5 c1p2 1 c2p 1 c3 (8)

and

k (u ) 3 105 5 c4u 3 1 c5u 2 1 c6u 1 c7S9 1 c8uS9

1 c9up 1 c10uS9p 1 c11u 2p, (9)

where S9 5 S 2 35 psu, k is in MPa21, and p is in
MPa. The coefficients c1, . . . , c11 are shown in Table
1. The accuracy of the polynomial fit of k [Eqs. (8) and
(9) combined] is illustrated in Fig. 3. The thermobaric
component k (u) alone [Eq. (9)] is shown in Fig. 4.

b. Pressure gradient force representation in the
dynamic equations

The PGF in a hydrostatic fluid can be expressed as
the isobaric gradient of the geopotential f [ gz, that
is, a=z p 5 =pf. Integrating the hydrostatic equation
]f /]p 5 2a from the sea surface (zero pressure) to
pressure p then allows us to write the PGF as

p

2a= p 5 2= f 5 2=f 1 = a dp9, (10)z p srf E p

0

where f srf /g is the sea surface height. By virtue of

=p lna 5 =p lna*, (11)

which follows from (7), the integrand in the last term
of (10) can be expressed as

a
= a 5 = a* 5 A (p)= a*,p p r pa*

allowing (10) to be written in the form

2a= p 5 2= fz p

p

5 2=f 1 A (p9)= a* dp9. (12)srf E r p

0

Now if a modified geopotential f* is defined by
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FIG. 3. Adiabatic compressibility (1025 MPa21) at 0 and 50 MPa (k0 and k5) as function of u and S. Solid: from JMcD (1995); dashed:
[(8) 1 (9)] minus JMcD (1995).

FIG. 4. Thermobaric compressibility (1025 MPa21) at 0 MPa ( ,(u)k0

solid) and 50 MPa ( , dashed) as function of u and S.(u)k5

]f*
[ 2a*, (13)

]p

then f* 5 2 a* dp9 andpf* #srf 0

p

2= f* 5 2=f* 1 = a* dp9. (14)p srf E p

0

Setting 5 f srf allows us to combine the last ex-f*srf

pression with (12) into

p

2= f* 5 2= f 2 [A (p9) 2 1]= a* dp9. (15)p p E r p

0

Viewing (10) as a variant of the thermal wind equa-
tion, we can argue that =pf and # =pa dp9 are of com-
parable magnitude, and that this also holds for # =pa* dp9
by virtue of (12). According to (6) and Fig. 4, the factor
[Ar(p) 2 1] in an ocean 5 km deep is at most of order
1022. Hence we may conclude that

2=pf . 2=pf*. (16)

This is an important result. It implies that estimates of
the horizontal PGF are insensitive to whether the hy-
drostatic equation has been integrated using the in situ
or the virtual potential density, that is, whether or not
the oceanic density field is subject to compression by
the pressure-related part k ( p) of the compressibility co-
efficient.

It is instructive to verify that replacing a* by ar in
situations where thermobaric effects are important
yields a PGF approximation inferior to (16). Retracing
the steps leading from (10) to (16), but with ar taking
the place of a*, one immediately realizes that the re-
lationship between =p lna and =p lnar analogous to
(11) is complicated by the fact that the isobaric gradient
of k (u) does not vanish. The equation taking the place
of (11) can be inferred from (5) to be

pr

(u )= lna 5 = lna 1 = k (u, S, p9) dp9. (17)p p r E p

p

At pressure levels far from pr, the last term on the right-
hand side of (17) is not necessarily small. In fact, it can
overshadow the term on the left, thereby rendering
|=p lnar| much larger than |=p lna|.
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Starting from (17) and substituting ar for a* in (13)
and (14) leads to the following analog of (15):

p a
2= f 5 2= f 2 2 1 = a dp9p r p E p r1 2ar0

p pr

(u )2 a = k (u, S, p0) dp0 dp9, (18)E E p

0 p9

where f r is the geopotential associated with ar.
The single-integral term in (18) is the analog of the

last term in (15); both are similar in magnitude and thus
small compared to =pf. The double-integral term, how-
ever, which is spawned by the last term in (17) and thus
represents the error in the ar-based PGF calculation
stemming from the neglect of thermobaricity, cannot be
counted on as being small. This obviously will prevent
us from declaring 2=pf r a good approximation to
2=pf. The effect of the last term in (18) is particularly
strong if =pk (u)—or =pu, for that matter, given that k (u)

is predominately a function of u—remains constant over
a large depth range.

Switching from isobaric to isopycnic differentiation
in (16) yields an approximation to the PGF in the form

[2a=z p .] 2 =pf* 5 1 , (19)2= M* p= a*a ar r

where

M* 5 pa* 1 f*

is the Montgomery potential based on a*. Note the for-
mal similarity between (19) and (1).

A hydrostatic equation stated in terms of a* can be
derived by differentiating the modified Montgomery po-
tential in the vertical, ]M* 5 p]a* 1 a*]p 1 ]f*. By
virtue of (13), this expression reduces to

]M*
5 p.

]a*

In conclusion, the addition of the last term in (19)
and the use of a* in the Montgomery potential and the
hydrostatic equation comprise the changes needed to
account for thermobaric effects in isopycnic coordinate
models. The three components of the PGF (we interpret
here the hydrostatic equation as a statement about the
vertical PGF) retain their original isopycnic appearance,
with the gradient of virtual potential specific volume
along isopycnic surfaces as a correction term.

In order to gain an understanding of the magnitude
of the last term in (19) in relation to the PGF itself, we
write this term as

pr

(u )pa*= lna* 5 pa*= k dp9 (20)a a Er r

p

and consider the case of a potential isopycnal descend-
ing from 0 to 5 km (50 MPa) over a horizontal distance
L. Assuming a representative value of 1025 MPa21 for
|k (u)| and a middepth value of 2 3 104 m2 s22 for pa*,

we obtain for (20) a magnitude of roughly (10 m2 s22)/L.
Assuming that the sloping isopycnal is associated with
a 10 cm s21 current, the left-hand side of (19) has a
magnitude of 1025 m s22 at midlatitudes. Thus, (20) and
the PGF are of comparable magnitude if L 5 1000 km,
that is, if the isopycnal slope is 1:200.

Isopycnals occasionally are more steeply sloped than
this, implying that (20) is not always small compared
to the PGF. Practical tests conducted on isopycnal fields
derived from Levitus (1982) data suggest, however, that
the above estimate is overly pessimistic. At ;117 000
grid points where the geostrophic velocity exceeded 1
cm s21, the term (20) was found to exceed 10% of the
PGF at roughly 1 in 1000 points, while no point was
found where (20) reached the same magnitude as the
PGF.

Generally speaking, it is clear that the term (20) is
much smaller than the corresponding term

pr

p= a 5 pa= k dpa a Er r

p

in (1), given that k is 40 times larger than the value for
|k (u)| assumed above.

The example discussed in the introduction can be used
to illustrate that substituting virtual potential specific
volume for in situ specific volume in the three-dimen-
sional PGF calculation indeed produces satisfactory re-
sults. The pressure difference calculated from the virtual
potential density field referenced to 0, 20, and 40 MPa,
respectively, is plotted in Fig. 5 using dashes of different
length. The solid curve from Fig. 1 has been added as
reference. Even though the abscissa scale has been ex-
panded to accentuate possible differences, the three
dashed curves are found to be virtually indistinguishable
from the reference curve.

c. Static stability and folding of potential isopycnals

For the purpose of the following discussion we find
it useful to define a ‘‘mean ambient pressure’’ pl whose
relationship to the local and to the reference pressure is
given by p 5 pr 1 dp 1 p̃ where dp 5 pl 2 pr is the
‘‘ambient pressure bias’’ and p̃ is a small pressure de-
viation.

The most easily understood consequence of ther-
mobaricity is its impact on the relation between iso-
pycnal layer thickness and static stability.

The Brunt–Väisälä frequency N is the conventional
measure of static stability. It is defined as

]
2N 5 g lna , (21)l]z

where al is the potential specific volume with respect
to the mean ambient pressure pl 5 pr 1 dp (held con-
stant during vertical differentiation), and z is directed
upward.

By setting p 5 pl in (7) and differentiating the outside
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FIG. 5. Interhemispheric pressure difference (in relative units) based on u/S profiles shown in Fig. 1. Solid: using in situ
density (repeated from Fig. 1); dashed: using virtual potential densities , , .r* r* r*0 2 4

members of that equation with respect to z while holding
pl constant, one finds that (21) can also be written in
terms of a*:

]
2N 5 g lna*(u, S, p ). (22)l]z

Hence, the frequency of buoyancy oscillations remains
unchanged if the specific volume of seawater in the
model is changed from its in situ value to a*.

Taking the logarithm in the first part of (7) gives,
after setting p 5 pl,

pr

(u )lna*(u, S, p ) 5 lna (u, S) 1 k (u, S, p9) dp9.l r E
pl

Combining the z derivative of the above and (22) yields

(u ) (u )] lna ]k ]u ]k ]Sr 2g . N 1 gdp 1 . (23)1 2]z ]u ]z ]S ]z

This equation provides a diagnostic criterion for the
occurrence of isopycnic-coordinate surface folding due
to excessive pressure bias. The conditions under which
potential isopycnals fold have previously been discussed
by You and McDougall (1990). Our intent in deriving
the above formula is to highlight the roles played by
the ambient pressure bias and the coefficient k (u) en-
compassing the essence of thermobaricity.

The critical pressure bias dpcrit beyond which folding
occurs is found by setting (23) to zero. The potential
for folding, indicated by a small absolute value of dpcrit ,
is large if the bracketed term in (23) is large in absolute
terms. Given that k (u) is primarily a function of u (see
Fig. 4) and ]k (u)/]u , 0, the threat of folding in situ-
ations where pr . pl is thus greatest if u decreases
upward, while in situations where pr , pl, the threat is
greatest if u increases upward. Since ]k (u)/]S , 0, a
vertical salinity gradient of the same sign as the potential
temperature gradient increases the potential for folding.

Reviewing existing global hydrographic datasets, one

finds that degeneracy of the depth-to-potential density
coordinate transformation near the surface and near the
bottom in subpolar regions cannot simultaneously be
avoided by any choice of reference pressure. Because
of the wide range of variations in temperature and sa-
linity in the subpolar surface layer, a practical choice
for global modeling is to use a high enough reference
pressure to avoid the problem in the abyssal waters,
while accommodating near-surface conditions by a
modified coordinate mapping procedure there.

Folding of surfaces a* 5 const (an issue of interest
if a* is to be used as vertical model coordinate) can be
investigated by deriving an equation analogous to (23)
but with ]lna*/]z replacing ] lnar/]z on the right-hand
side. Note that a* in this context is to be taken as a
function of in situ pressure, not of pl as in (22). A
derivation paralleling that of (22), but without setting
p 5 pl, yields

]
2 2 (u )g lna*(u, S, p) 5 N 1 rg k . (24)

]z

Assuming, as we did in discussing (20), a represen-
tative value of 1025 MPa21 for |k (u)|, the term rg2k (u) in
(24) is of order 1026 s22. This value is small compared
to N 2 in the thermocline, though definitely not in the
deep ocean. However, by adding a constant to (9) [and
modifying c3 in (8) accordingly], k (u) can be reduced to
near zero at cold temperatures, thereby rendering the
term rg2k (u) small compared to N 2 in the deep ocean as
well. With this in mind, we can state that the depth
variation of virtual potential density closely approxi-
mates the depth variation of locally referenced potential
density and that multivaluedness of a* in the vertical
is therefore likely to be uncommon.

d. Neutrality of potential and virtual potential
isopycnals

Aside from the folding of isopycnals, the deviation
from neutrality of constant potential density surfaces is
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a concern in isopycnic modeling. Lateral stirring pre-
dominantly takes place along neutral surfaces. Thus,
alignment of coordinate surfaces with neutral surfaces
not only results in a clean separation of isopycnal and
diapycnal mixing in the model, but also allows naturally
occurring mixing to at least partially mask numerical
dispersion errors associated with along-coordinate ad-
vection.

McDougall (1988) expresses the slope difference be-
tween ar and neutral surfaces as a function of the iso-
neutral u gradient, the vertical gradients of u and S, and
the pressure variation of the saline contraction and ther-
mal expansion coefficients. Our aim here is to cast the
nonneutrality condition explicitly in terms of k (u) .

It follows from the definition of neutral surfaces that
they are tangential to (strictly speaking, osculating with
respect to) a constant potential density surface refer-
enced to the mean ambient pressure pl (McDougall
1987). The nonneutrality of a potential isopycnal ref-
erenced to a ‘‘distant’’ pressure pr can be expressed in
terms of the gradient of potential density referenced to
pl along this surface. Setting p 5 pl and keeping both
pl and pr constant, we obtain from (5)

pr

(u )= lna 5 = k (u, S, p9) dp9a l a Er r

pl

(u ). 2dp= k . (25)ar

The deviation of neutral surfaces from the coordinate
isopycnals, measured in terms of potential specific vol-
ume anomaly, is thus proportional to the product of the
ambient pressure bias dp and the isopycnal gradient of
the thermobaric compressibility.

As pointed out before and shown in Fig. 4, k (u) is
primarily a function of u. Hence, (25) can be further
reduced to

(u )]k
= lna . 2dp = u. (26)a l ar r]u

Within the limits of the approximations made in deriving
this expression [which is similar to one in section 7.2
of McDougall (1988)], we can state that in oceanic re-
gions where water mass properties are tightly coupled
in u–S space (meaning that both u and S, and by im-
plication k (u) , are functions of ar alone), potential iso-
pycnals are neutral surfaces regardless of the magnitude
of the pressure bias dp. Stated differently, nonneutrality
is only an issue where water masses of different u, S
properties meet at pressures markedly different from the
reference pressure pr.

It is of interest to explore whether the nonneutrality
problem associated with ar surfaces can be reduced by
switching to an a*-based coordinate system. A measure
of the deviation of a* surfaces from neutrality can be
found by evaluating the gradient of al at constant a*.
Setting p 5 pl in (5) and combining it with (7) gives

pl

(u )a 5 a*A (p ) exp 2 k (u, S, p9) dp9 .l r l E1 2
p

This yields

pl

(u )= lna 5 2= k (u, S, p9) dp9a* l a* E
p

pl

(u ) (u )5 2 = k (u, S, p9) dp9 1 k = p.E a* a*

p

Evaluated at p 5 pl, this becomes

=a* lnal 5 k (u)=a*p. (27)

Comparison of (26) and (27) shows that the nature
of the approximation error in the ar and a* is very
different.

As implied by the discussion of (26), ar surfaces be-
come neutral surfaces as dp → 0. Incidentally, this pro-
vides an analytical basis for the practice in hydrographic
diagnostics where patching isopycnic-coordinate maps
with reference pressures separated by O(10 MPa) pro-
vides good global continuity in water-mass distribution
characteristics (Lynn and Reid 1968). The equivalence
also works for conditions of weak variability of k (u) on
isopycnals, that is, under conditions of approximate lat-
eral water mass homogeneity.

An a* surface, on the other hand, is exactly neutral
only if it is isobaric. Thus, if a finite pressure bias dp
combined with an isopycnal water mass gradient creates
a significant neutral surface slope relative to an ar sur-
face, the associated a* surface will be more neutral as
long as its slope is small. Note that dp does not appear
in (27).

The quantitative importance of the right-hand side of
(27) is hard to judge. Like the term rg2k (u) in (24), it
contains k (u) as an undifferentiated factor; hence, its
magnitude in different regions of (u, S, p) space can be
manipulated by an additive constant. While minimizing
k (u) in the abyssal ocean appeared to be the best strategy
for minimizing the importance of the term rg2k (u) in
(24), (27) suggests that buoyancy neutrality of a* sur-
faces benefits most from reducing the overall magnitude
of k (u) , that is, from removing a nonzero mean. If this
‘‘mean’’ is evaluated in a mass-weighted sense, the fact
that most of the water in the ocean is close to freezing
implies that the two requirements actually can be sat-
isfied simultaneously.

Judging from the above discussion, a* does not ap-
pear to offer a clear advantage over ar as far as buoyancy
neutrality is concerned. In both cases there will be oce-
anic regions where numerical diffusion along a coor-
dinate surface has a nonzero diapycnal component. This
problem can be ameliorated to some extent by mixing
tensor rotation (Griffies et al. 1998), but one should note
that improving the accuracy of explicit mixing processes
in the model leaves unaffected the diapycnal mixing
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resulting from numerical dispersion errors in the hori-
zontal transport calculation in situations where coor-
dinate surfaces and neutral surfaces are not aligned.

5. Discussion

We have introduced in this paper a new variable called
‘‘virtual potential density’’ (and its reciprocal, virtual
potential specific volume a*), which can be viewed as
the potential density that would be computed from in
situ conditions using a compressibility coefficient re-
flecting the pressure dependence of seawater compress-
ibility alone.

Our main result, which is of potential interest not only
in the context of isopycnic models but in any ocean
model featuring steeply inclined coordinate layers, is
that a* is a near-perfect substitute for in situ specific
volume in representing the oceanic mass field in dy-
namic model computations, including the full comple-
ment of vertical and horizontal pressure forces.

Specifically, a* defines the layerwise increments of
a modified Montgomery potential, ]M* 5 a*]p, which
defines a major portion of the horizontal PGF in the
momentum equations. This provides the basis for in-
cluding the thermobaricity effect in isopycnic coordi-
nate models, and ensures that in their absence the model
dynamics reduce to the conventional incompressible
case where one sets ]M 5 ar]p.

Consistent with the notion that the spatial distribution
of a* defines much of the stratification impact on the
isopycnic system dynamics, we have shown that the
Brunt–Väisälä frequency is represented correctly. This
implies that substituting a* for a in a numerical model
does not affect internal wave speeds.

By comparing the vertical gradient of al to that of
potential specific volume ar, we arrived at a criterion
for the single-valuedness of the latter with respect to z.
Sign changes in the vertical ar gradient signal a degen-
eracy in the depth-to-isopycnic coordinate transforma-
tion. The single-valuedness requirement constrains the
reference pressure choice whenever u and/or S increases
upward in the abyssal ocean, or decreases upward near
the surface. In today’s ocean, this constraint can be sat-
isfied in the abyssal waters by choosing a middepth
reference pressure such as 20 MPa. The cold haloclinic
near-surface layers in subpolar regions cannot be ac-
commodated in this way, though, without either intro-
ducing a layer patching scheme with different reference
pressures, or some form of hybrid coordinate transfor-
mation in the near-surface layers.

The gradient of al along a potential isopycnal is a
useful measure of the degree to which the latter deviates
from the local neutral surface. Since the slope difference
is mainly a function of the isopycnic potential temper-
ature gradient, weighted by the ambient pressure bias,
it vanishes asymptotically wherever the temperature–
salinity correlation is tight, or where the ambient pres-
sure bias is small. This implies that potential isopycnals

are piecewise nearly neutral for diagnostic purposes.
Significant deviations occur only in regions of pro-
nounced water mass contrasts, and even there only for
large pressure biases.

The agreement between the vertical gradients of al

and a* expressed by (24) suggests that a* is single-
valued in z even in situations where ar is not. It is
therefore of interest to explore the pros and cons of a*
as vertical model coordinate. The ideal coordinate
would be one that is single-valued in z, constant along
neutral surfaces, material under adiabatic conditions,
and endowed with a simple PGF formula. Attempts at
finding a variable that satisfies several of these condi-
tions have been undertaken by Jackett and McDougall
(1997) and, more recently, by Eden and Willebrand
(1998).

Our analysis suggests that surfaces a* 5 const do
not systematically track neutral surfaces (locally ref-
erenced potential isopycnals) any better than do surfaces
ar 5 const. From this perspective, a* offers no apparent
advantage over potential density as a vertical model
coordinate. However, a* is advantageous in that the
two-term expression, 2=M* 1 p=a*, for the horizontal
PGF given in (19) reduces to 2=M* if evaluated in
(x, y, a*) coordinates. That the PGF can be expressed
as the gradient of a potential function (M* 5 pa* 1
f* in this case) makes it easy for a model using a* as
vertical coordinate to emulate dynamic constraints gov-
erning spinup of horizontal circulation systems.

There appear to be two reasons for choosing a* over
ar as vertical coordinate, namely, simplicity of the PGF
formulation and less likelihood of its being multivalued
in z. The main disadvantage of a* is its nonmaterial
character in adiabatic flow. As far as buoyancy neutrality
is concerned, neither variable appears to have a clear
advantage. The relative weights of the four factors con-
sidered undoubtedly depends on the particular model
application and will have to be determined in practical
tests.

An important reason for retaining ar as a vertical
coordinate would be that it is conserved in adiabatic
flow. This greatly facilitates the dynamic interpretation
of model results because it unambiguously links inter-
layer mass exchange to diapycnal processes acting on
the fluid. More importantly, it greatly reduces the dif-
fusion associated with the numerical evaluation of ver-
tical transport terms in the model equations. Virtual po-
tential density does not qualify in this regard, as can be
seen from the equation for the time rate of change of
a* obtainable from (7). Under adiabatic conditions this
‘‘generalized vertical velocity’’ in a* coordinates re-
duces to

d dp
(u )lna* 5 2k ,

dt dt

whereas dar/dt reduces to zero.
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